УДК 629.114.2.001.2

ПОВЫШЕНИЕ ОПОРНЫХ КАЧЕСТВ ГУСЕНИЧНЫХ МАШИН СПАСАТЕЛЬНОЙ ТЕХНИКИ ПРИ ИХ РАБОТЕ НА СЛАБЫХ ПОЧВО-ГРУНТАХ

В.Н. Лобанов¹, В.И. Растягаев², С.С. Сухов²

 1 - Брянский государственный инженерно-технологический университет 2 - Брянский государственный университет им. акад. И.Г. Петровского

Проведено математическое моделирование взаимодействия гусеничных машин спасательной техники, получено уравнение для оценки их опорных качеств при работе на слабых почво-грунтах.

Ключевые слова: почво-грунт, машина гусеничная, опорная длина гусеницы, проходимость гусеничной машины, ширина гусеницы, деформация слабого почво-грунта

Использование тяжелых многооперационных гусеничных высокой энергонасыщенности и проникновение их в регионы с почво-грунтами, имеющими низкую несущую способность, могут обострить экологическую обстановку при проведении спасательных работ [1-3].

Назрела необходимость в разработке научно-обоснованных методов оценки уплотняющего воздействия современных и перспективных машин на лесные почво-грунты с целью минимизировать уплотнение почвы [1-3].

Как показывают опытные данные ряда исследователей [1-3], взаимодействие гусеничных систем с почво-грунтом базируется на уплотнении почвы движителем с учетом его параметров и свойств почвы. Уплотнение слабых почво-грунтов определяется опорными свойствами гусеничных машин.

Опорные свойства гусеничной лесной машины, главным образом, зависят от максимальных давлений гусеницы на почво-грунт под опорными катками q_{\max} , опорной длины гусеницы L и ширины b гусеницы. В свою очередь, максимальные давления q_{\max} зависят от отношения шага катков s к шагу звеньев гусениц t, числа опорных катков n и количества звеньев гусеницы n_I , передающих нагрузку от опорных катков на почво-грунт [1, 2]:

$$q_{\text{max}} = q_0 \left\lceil \frac{(n-1)s + t}{n_1 t} \right\rceil,\tag{1}$$

где q_0 - среднее давление гусеницы на грунт.

Количество звеньев n_1 , передающих нагрузку от опорных катков, определяется свойствами почво-грунта. Чем он слабее, тем больше звеньев участвует в передаче нагрузки от опорных катков, следовательно, меньше пиковое давление $q_{\text{max}}[1, 2]$. Из формулы (1) видно, что чем меньше отношение шага катков к шагу гусеницы, тем меньше максимальные давления в пиках под опорными катками. У современных сельскохозяйственных, промышленных и болотоходных гусеничных тракторов отношение s/t составляет 1,7...3,5; у гусеничных тракторов s/t > 3.5.

Указанные показатели опорных свойств определяют, в основном, глубину колеи, т. е. деформацию почво-грунта после прохода гусеничной машины.

Определим глубину колеи гусеничной машины при работе на слабых почво-грунтах. Для упрощения допустим, что машина движется по горизонтальной поверхности и центр давления совпадает с центром опорной поверхности гусениц.

При работе гусеничной машины на слабых почво-грунтах основная доля деформации грунтов при его сжатии приходится на его уплотнение h_1 .

Деформация уплотнения dh_1 элементарного слоя почво-грунта толщиной dz, расположенного на глубине z от поверхности грунтового массива, определим по уравнению [1]:

$$dh_1 = \frac{dz}{E_0} \left[\sigma_z - \mu (\sigma_x + \sigma_y) \right], \tag{2}$$

где E_0 – модуль упругой деформации почво-грунта; σ_x , σ_z , σ_y - нормальные напряжения, действующие на рассматриваемый элементарный объем почво-грунта; μ - коэффициент Пуассона для почво-грунтов [1].

При сплошной нагрузке

$$\sigma_z = q_0; \quad \sigma_x = \sigma_y = \frac{\mu}{1 - \mu} q_0. \tag{3}$$

Тогда

$$dh_{1} = \frac{\sigma_{z}dz}{E_{0}} \left(1 - \frac{2\mu^{2}}{1 - \mu} \right). \tag{4}$$

Обозначая множитель, стоящий в скобках, через β , получаем:

$$dh = \frac{\beta \sigma_z dz}{E_0},\tag{5}$$

где β - коэффициент, характеризующий боковое расширение почво-грунта:

Интегрирование полученного выражения (5) в пределах от z=0 (поверхность почвогрунта) до z=H (глубина залегания твердого слоя, т.е. толщина деформируемого слоя грунта), позволяет определить деформацию уплотнения h_1 :

$$h_{1} = \int_{0}^{H} dh_{1} = \frac{\beta}{E_{0}} \int_{0}^{H} \sigma_{z} dz .$$
 (6)

Зависимость $\sigma_z = \Phi(z)$ примем в виде [2]

$$\sigma_z = \frac{1}{1 + \frac{\mu(x-1)}{x} \left(\frac{z}{b}\right) + \frac{1}{\mu x} \left(\frac{z}{b}\right)^2} q_0, \tag{7}$$

где x = L/b.

Для определения деформации уплотнения почво-грунта, подставим уравнение (7) в выражение (6) и произведем интегрирование в указанных пределах:

$$h_{1} = \frac{\beta q_{0}}{E_{0}} \int_{0}^{H} \frac{dz}{1 + \frac{\mu(x-1)}{xb} z + \frac{1}{\mu x b^{2}} z^{2}}.$$
 (8)

Так как $\frac{\mu^2(x-1)^2}{x^2b^2} < \frac{4}{\mu xb^2}$, то

$$h_{1} = \left[\frac{2bq_{0}\beta x}{E_{0}\sqrt{\frac{4}{\mu xb^{2}} - \frac{\mu^{2}(x-1)^{2}}{x^{2}b^{2}}}} \right] arctg \frac{\frac{2z}{\mu xb^{2}} + \frac{\mu(x-1)}{xb}}{\sqrt{\frac{4}{\mu xb^{2}} - \frac{\mu^{2}(x-1)^{2}}{x^{2}b^{2}}}} \right]_{0}^{H} = \left[\frac{2\beta q_{0}bx}{E_{0}\sqrt{\frac{4x}{\mu} - \mu^{2}(x-1)^{2}}} arctg \frac{\frac{2z}{\mu b} + \mu(x-1)}{\sqrt{\frac{4x}{\mu} - \mu^{2}(x-1)^{2}}} \right]_{0}^{H}.$$

$$(9)$$

После подстановки пределов имеем следующее выражение для определения h_1 :

$$h_{1} = \frac{2bxq_{0}\beta}{E\sqrt{4\frac{x}{\mu} - \mu^{2}(x-1)}} \left[arctg \frac{\frac{2H}{\mu b} + \mu(x-1)}{\sqrt{4\frac{x}{\mu} - \mu^{2}(x-1)^{2}}} - arctg \frac{\mu(x-1)}{\sqrt{4\frac{x}{\mu} - \mu^{2}(x-1)^{2}}} \right].$$
 (10)

Окончательное выражение для определения деформации уплотнения почво-грунта h_1 после преобразований примет вид:

$$h_{1} = \left[\frac{2xb\beta}{E_{0}\sqrt{4\frac{x}{\mu} - \mu^{2}(x-1)^{2}}} \cdot arctg \frac{\sqrt{4\frac{x}{\mu} - \mu^{2}(x-1)^{2}}}{2\frac{xb}{H} + \mu(x-1)} \right] q_{0}.$$
 (11)

По результатам экспериментальных исследований [1, 2] предлагается принимать значение H=2b.

Обозначив множитель, стоящий в скобках, через α , получим выражение для определения коэффициента сопротивления уплотнению слабого почво-грунта:

$$\alpha = \frac{2xb\beta}{E_o \sqrt{4\frac{x}{\mu} - \mu^2(x-1)^2}} \operatorname{arctg} \frac{\sqrt{4\frac{x}{\mu} - \mu^2(x-1)^2}}{x + \mu(x-1)}.$$
 (12)

На рис. 1 приведены графические зависимости коэффициента сопротивления уплотнению исследуемых почво-грунтов, в таблице – показатели их физико-механических свойств.

Показатели физико-механических свойств почво-грунтов

Таблица

Тип почво-грунта	Параметры почво-грунта		
	E_0 , МПа	q_S , МПа	μ
Торфяная осушенная целина	0,15	0,12	0,28
Влажный с перегноем	0,17	0,15	0,3
Задернелый	0,2	0,2	0,35
Песчаный	0,27	0,25	0,4

Примечание: q_S - предел несущей способности слабого почво-грунта.

Из анализа зависимостей $\alpha = \Phi(L,b)$ видим, что с изменением размеров гусеницы $(2 \le L \le 4$ и $0.4 \le b \le 1)$ коэффициент α увеличивается, т.е. при увеличении размеров опорной поверхности гусеницы опорные свойства лесной машины на различных почво-грунтах возрастают.

Близкие по значению экспериментальные данные по коэффициенту сопротивления уплотнению соответствующих почво-грунтов приведены в [3].

Предложенная формула (12) учитывает влияние на коэффициент сопротивления уплотнению почво-грунта как свойств грунта (μ , β , E_0 , q_s), так и параметров гусеничного движителя (b, L, s, t, n_1 , n).

Результаты исследований могут быть использованы при разработке перспективных движителей гусеничных машин для проведения спасательных работ.

Список литературы

- 1. Лобанов, В.Н. Исследование взаимодействия гусеничного движителя лесных машин со слабым грунтом / В.Н. Лобанов // Лесной журнал. 1997. № 1-2. С. 45-49.
- 2. Растягаев, В.И. К вопросу эксплуатации гусеничных машин спасательной техники на слабых грунтах / В.И. Растягаев, С.С. Сухов // Вестник Брянского государственного университета. -2011. №4. С. 187-190.
- 3. Растягаев, В.И. К вопросу об экологичности базовых машин спасательной техники / В.И. Растягаев, С.С. Сухов // Материалы междунар. научно-практ. конф. «Актуальные вопросы экстремальных состояний», Брянск, 25 ноября 2013 г. Брянск: Десяточка, 2013.

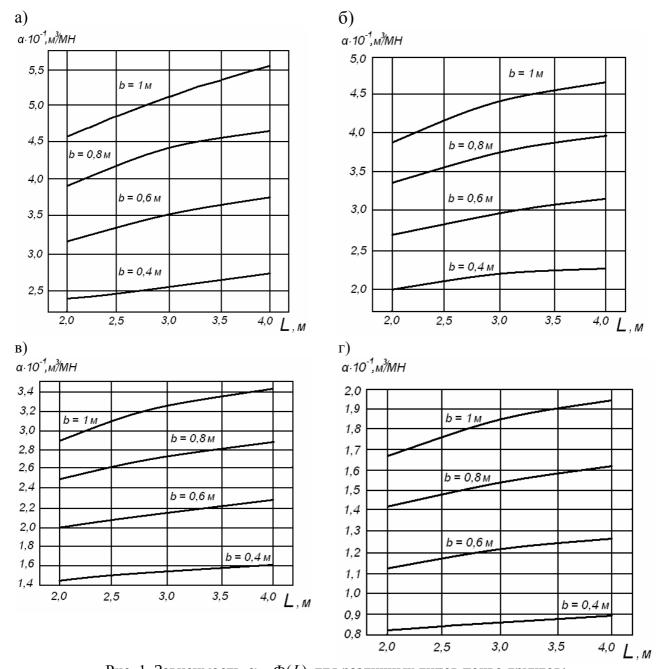


Рис. 1. Зависимость $\alpha = \Phi(L)$ для различных типов почво-грунтов: а - торфяная осушенная целина; б - влажный с перегноем; в – задернелый; г - песчаный

4. Сухов, С.С. Экологическая оценка процесса взаимодействия пневматического колеса с деформируемым грунтом / С.С. Сухов, В.И. Растягаев, В.В. Лазарев В.В. // Вестник Брянского государственного университета. – 2010. - №4. - С. 246-250.

Сведения об авторах

Лобанов Валерий Николаевич – кандидат технических наук, профессор Φ ГБОУ ВПО «Брянский государственный инженерно-технологический университет».

Растягаев Владимир Иванович – кандидат технических наук, доцент кафедры безопасности жизнедеятельности ФГБОУ ВПО «Брянский государственный университет имени академика И.Г. Петровского».

Сухов Сергей Сергеевич - кандидат технических наук, доцент, заведующий кафедрой безопасности жизнедеятельности ФГБОУ ВПО «Брянский государственный университет имени академика И.Г. Петровского», $bgd\ cc@bk.ru$.

IMPROVING THE SUPPORT QUALITIES CRAWLER CARS AND RESCUE EQUIPMENT IN THEIR WORK ON WEAK SOILS

V.N. Lobanov¹, V.I. Rastyagaev², S.S. Sukhov²

¹ - Bryansk State Engineering-technological University,

Mathematical modeling of interaction of tracked vehicles rescue equipment, the equation for the evaluation of their strong qualities when working on weak soils.

Keywords: soil, tracked vehicle, the supporting length of track, cross-country tracked vehicle track width, the deformation of weak soil

References

- 1. Lobanov V. N. Study of the interaction between caterpillar tracks of forest machines with low ground, *Lesnoy Zhurnal*, 1997, No.1-2, pp. 45-49.
- 2. Rastyagaev V.I., Sukhov S.S. To the question of exploitation of tracked vehicles and rescue equipment on soft soils, *Vestnik Bryanskogo gosudarstvennogo universiteta*, 2011, No.4, pp. 187-190.
- 3. Rastyagaev V.I., Sukhov S.S. To the question about ecological compatibility of basic machines of the Savior-tive technology. Materials of the international scientifically-practical conference "Topical issues of extreme States", November 25, 2013. Bryansk: Group of companies "Desyatochka", 2013.
- 4. Sukhov S.S., Rastyagaev V.I., Lazarev V.V. Environmental assessment process the interaction pneumatic wheel with deformable soil, *Vestnik Bryanskogo gosudarstvennogo universiteta*, 2010, No.4, pp. 246-250.

Authors' information

Valery N. Lobanov – Candidate of Technical Sciences, Professor at Bryansk State Engineering-technological University.

Vladimir I. Rastyagaev – Candidate of Technical Sciences, associate Professor of Department of the life safety at Academician I.G. Petrovskii Bryansk State University.

Sergey S. Sukhov - Candidate of Technical Sciences, Head of Department of the life safety at Academician I.G. Petrovskii Bryansk State University, *bgd cc@bk.ru*.

²- Academician I.G. Petrovskii Bryansk State University